
Improved random effects prediction ∗

Ruggero Bellio and Paolo Vidoni

Department of Economics and Statistics, University of Udine

via Tomadini 30/a, I-33100 Udine, Italy.

ruggero.bellio@uniud.it paolo.vidoni@uniud.it

∗Running title: Improved random effects prediction

1



Abstract

This paper focuses on the prediction of parametric functions of random effects in gen-

eralized linear mixed models, for settings with independent groups. Borrowing from

recent results on frequentist prediction, a methodology to obtain accurate prediction

is introduced. The proposal is defined by conditioning on the observed value of the

response for the relevant group. The resulting procedure has a simple form, and can

be applied both for obtaining accurate prediction limits as well as the entire predic-

tive distribution. Prediction intervals are provided for commonly used models, such as

linear mixed models and logistic regression with random intercepts. Analytical results

as well as simulation results support the good properties of the methodology, which is

also illustrated by some numerical examples.

Keywords: Generalized linear mixed model; Parametric bootstrap; Prediction interval;

Predictive distribution; Random effect.

1 Introduction

Mixed effect models are a widely used class of statistical models, and prediction of random

effects is one of the most fundamental usage of such models; see, for example, Jiang (2007,

§2.3 and §3.6) and McCulloch et al. (2008). Indeed, early applications of mixed models

readily attempted to address the issue, as vividly illustrated in the discussion paper by

Robinson (1991).

Here we briefly summarize the main results about the literature on random effects pre-

diction. For linear mixed models, and under the Gaussian assumption for both the random

effects and the residual error, the frequentist approach to random effects prediction employs

the empirical BLUP. Namely, the conditional mean of the random effects given the observed

data is computed, with model parameters replaced by corresponding estimates. When the

assumptions of normality or linearity do not hold, the tendency is to mirror what done in

the linear normal case. This amounts to employing as point predictor a summary of the

conditional distribution of the random effects given the data, such as the mean or the mode,
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as described by Skrondaal and Rabe-Hesketh (2009). Prediction intervals almost always

consist of Wald-type intervals, given by the point predictor plus or minus the standard error

of prediction multiplied by a suitable constant. The standard error of prediction is given

by the square root of some estimate of the mean squared error of prediction. As reported

in Skrondaal and Rabe-Hesketh (2009), a common choice in mixed models is given by the

variance of the conditional distribution of the random effects given the data, with model

parameters replaced by estimated values. For the special case of normal linear mixed models

it is relatively straightforward to incorporate the variability of fixed effects into the standard

error of prediction. Even in such favourable setting, however, accounting for the variability

of variance parameters in a simple fashion is virtually impossible. In short, two are the

main pitfalls of the aforementioned frequentist techniques for random effects prediction: (i)

Symmetric prediction intervals are often employed, even if the conditional distribution of

the random effects given the observed data need not be symmetric; (ii) Variability of model

parameters is typically neglected, even if in some cases it might be substantial, especially in

the case of variance parameters.

The paper by Booth and Hobert (1998) set the tone for much of the recent research

on the topic. Though they did not departed from symmetric prediction intervals, they

stressed the importance on basing prediction standard errors computation on Conditional

Mean Squared Error of Prediction (CMSEP), as opposed to Unconditional Mean Squared

Error of Prediction (UMSEP), which is sometimes used for normal linear mixed models. At

the same time, they emphasized the need to adjust for both bias and variability of naive point

predictions, employing a suitable bootstrap methodology. Their results were influential,

with echoes also in the literature on small-area estimation (Lohr and Rao, 2009; Datta and

Gosh, 2012). Booth and Hobert (1998), Subsection 1.5, also included a reference to the

research on predictive likelihoods, stressing its importance. Quoting their writing “These

predictive likelihood formulas allow for non-Bayesian inference about the entire distribution

of an unobserved random variable”. This is of course a commendable objective, but they

went on claiming “(. . . ) we are not aware of any simple, non-Bayesian methodologies that

are directly applicable to the general problem addressed in this article”, thus acknowledging

that such objective was not achieved at the time of writing.
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The aim of this paper is to illustrate how recent advances in techniques for frequentist

prediction make possible to obtain accurate interval prediction of scalar functions of param-

eter models and random effects in mixed models. Results are provided for a general class of

latent variable models (e.g. Skrondal and Rabe-Hesketh, 2004) for independent groups, with

special emphasis on Generalized Linear Mixed Models (GLMMs). We endorse a conditional

approach, along the lines of Booth and Hobert (1998). The method presented here provides

a predictive distribution, thus allowing for non-Bayesian inference about the entire distri-

bution of the target random variable. This fulfils exactly the task ruled out by Booth and

Hobert in the latter of the above quotations, but with the noteworthy distinction that the

methodology employed in the current paper is not based on predictive likelihood, but rather

on high-order prediction based on asymptotic methods and the bootstrap, as proposed in

Vidoni (1998), Ueki and Fueda (2007) and Fonseca et al. (2012).

The plan of the paper is as follows. Section 2 provides some background results on mixed

models and modern prediction methods. Section 3 focuses on random effects prediction,

studying the order of error terms arising in estimative approaches and quantifying the im-

provement achieved by higher-order methods. Sections 4 and 5 apply the methodology to

some commonly used models, providing numerical support to the theory of the previous

sections. Section 6 concludes the paper with a discussion, whereas some technical results are

reported in Appendices A and B. Some computational details are given in Appendix C.

2 Background

2.1 Model and notation

The general setting of interest here is as follows. Assume that the available response data

are arranged in k ≥ 1 groups, related to specific clusters or subjects, and that the random

variable Yij, i = 1, . . . , k, j = 1, . . . , ni, describes the response of unit j in the i-th group, hav-

ing dimension ni ≥ 1. The m-dimensional continuous random vector Ui = (Ui1, . . . , Uim)T ,

i = 1, . . . , k, specifies the unobservable random effects associated with the i-th group. Sup-

pose that U1, . . . , Uk are independent, identically distributed, with marginal density q(ui; γ),
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i = 1, . . . , k, being γ ∈ G ⊆ Rp, p ≥ 1, an unknown p-dimensional parameter, and that the

pairs (Yi, Ui), i = 1, . . . , k, with Yi = (Yi1, . . . , Yini
)T , are independent. Moreover, conditional

on Ui = ui, the responses in the i-th group are independent, having conditional density, with

respect to a suitable dominating measure, p(yij|ui; δ), j = 1, . . . , ni, with δ ∈ D ⊆ Rq+1,

q ≥ 0, an unknown (q + 1)-dimensional parameter.

According to this model, prediction of random effects Ui, related to the i-th group,

i = 1, . . . , k, should be based on the conditional density of Ui given the data y = (y1, . . . , yk)
T .

Due to the independence assumption, this reduces to

f(ui|yi;ω) =
q(ui; γ)

∏ni

j=1 p(yij|ui; δ)
Li(ω; yi)

, (1)

where ω = (γT , δT )T is the model parameter and

Li(ω; yi) =

∫
U
q(ui; γ)

ni∏
j=1

p(yij|ui; δ)dui (2)

is the i-th likelihood component, being U the support of Ui. The quantity Li(ω; yi) is a

normalizing term and with the exception of some special cases, mainly related to the normal

distribution, it is not known explicitly. Thus, the calculation of Li(ω; yi) requires suitable

numeric or approximation-based techniques. Since the groups are independent, the likelihood

function is given by L(ω; y) =
∏k

i=1 Li(ω; yi).

Predicted random effects are usually considered for inference concerning suitable one-

dimensional transformations R = R(Ui, ω) of vector Ui, with regard to the i-th group,

i = 1, . . . , k, such as the conditional mean of the response Yij given Ui = ui.

Let us consider the one-to-one transformation H : Rm → Rm, defined as H(ui) =

(R(ui, ω), ui2, . . . , uim) = (h1, h2, . . . , hm) = h. If the components are continuous and differ-

entiable functions, using basic probability we get from (1) the conditional density of R given

Yi = yi, namely

f(r|yi;ω) =

∫
H q(H

−1(h); γ)
∏ni

j=1 p(yij|H−1(h); δ)|J(h)|dh2 · · · dhm
Li(ω; yi)

, (3)

with |J(h)| = |
∑m

k=1 ∂R
−1(h)/∂hk|, H the support of the transformed random vector H(Ui)

and H−1(·) the inverse of function H(·), with first component R−1(·). Whenever the random

effect Ui follows a normal distribution and R is a suitable function of a linear transformation

of Ui, the numerator in (3) takes a simple explicit form, as shown in Section 4.
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In this paper we discuss prediction of one-dimensional reductions R, such as the expected

responses. Our approach involves, as predictive distribution, a suitable estimator of the con-

ditional distribution of R given the observation yi. The target are computationally tractable

prediction intervals for R, with both conditional and unconditional coverage probability close

to the nominal value. We note in passing that the prediction of R is logically distinct from

the problem of predicting a new observation of the response variable for a subject, which

was considered in Vidoni (2006). Although there are some common aspects, the prediction

problem for a new response is simpler, and the results in Vidoni (2006) suggest that in such

case the need to adjust standard estimative procedures is less pronounced.

2.2 Review of improved predictive procedures

Suppose that the observable random vector Y = (Y1, . . . , Yk)
T and the future or unobserv-

able random variable R follow a joint distribution depending on an unknown parameter

ω = (ω1, . . . , ωd)
T , d ≥ 1. In the following, ω̂ = ω̂(Y ) denotes the maximum likelihood

estimator for ω, or an asymptotically equivalent alternative estimator. Whenever Y and R

are conditionally independent given a transitive statistics T = T (Y ) (see Barndorff-Nielsen

and Cox, 1996), we consider for prediction purposes the conditional distribution of R given

T = t, with density and distribution functions given by f(r|t;ω) and F (r|t;ω), respectively.

An α-prediction interval for R or, in particular, an (upper) α-prediction limit lα(y) is

such that, exactly or approximately,

PY,R|T{R ≤ lα(Y )|T = t} = α, (4)

for all ω, where the target value α ∈ (0, 1) is fixed. The above probability is called conditional

coverage probability and it refers to the conditional distribution of (Y,R) given T = t.

Thus, prediction evaluation is done conditionally on the observed value of T . Furthermore,

it is important to stress that a conditional solution to (4) has an unconditional coverage

probability PY,R{R ≤ lα(Y )} equal to α as well.

Since exact solutions to (4) can be found only in special cases, we shall consider, as a

simple approximate solution, the estimative or plug-in prediction limit. That is, if rα(ω, t)

denotes the α-quantile of the conditional distribution of R given T = t, namely rα(ω, t) =
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F−1(α|t;ω), where F−1(·|t;ω) is the inverse function of F (·|t;ω), the estimative prediction

limit is given by r̂α = rα(ω̂, t). It is well-known that estimative prediction limits are usually

imprecise, since the associated coverage error can be substantial. To reduce the asymptotic

order of the coverage error term, suitable modifications of r̂α have been proposed by using

asymptotic calculations (Barndorff-Nielsen and Cox, 1996; Vidoni, 1998), simulation-based

calibration arguments (Beran, 1990; Hall et al. 1999) and approximate pivotal quantities

(Lawless and Fredette, 2005).

For random effects prediction, since some of the above mentioned modifications usually

require complicated asymptotic expansions, it may be convenient to consider the procedure

by Ueki and Fueda (2007), that gives asymptotically equivalent improved prediction limits

by means of a simple simulation-based technique. This solution is now briefly reviewed.

Under regularity assumptions, by means of suitable asymptotic expansions, we have that

the conditional coverage probability of r̂α is such that

α̂(ω, t) = PY,R|T {R ≤ rα(ω̂, T )|T = t} = EY |T [F{rα(ω̂, T )|T ;ω}|T = t]

= α + c(α, ω, t) + o(M−1),

where the expectation is with respect to the conditional distribution of Y given T = t, and

M is the asymptotic index, typically related to the sample size. The coverage error term

c(α, ω, t) has an asymptotic order O(M−1) which depends on the consistency features of ω̂.

Indeed,

c(α, ω, t) = −
d∑
s=1

bs(ω, t)Fs(rα|t;ω)

− 1

2

d∑
s,v=1

isv(ω, t) {Fsv(rα|t;ω)− 2Fs(rα|t;ω)`v(ω; rα, t)} . (5)

Here, rα = rα(ω, t), bs(ω, t) is the first-order conditional (on T = t) bias term of the s-th

component of the maximum likelihood estimator ω̂ and isv(ω, t) is the (s, v)-element of the

inverse of the conditional (on T = t) expected information matrix. Moreover, Fs(r|t;ω) and

Fsv(r|t;ω) are the first and the second partial derivatives of F (r|t;ω) with respect to the

corresponding components of vector ω and `v(ω; r, t) is ∂`(ω; r, t)/∂ωv, where `(ω; r, t) =

log f(r|t;ω). Usually, the conditional expected information matrix may be substituted with

the unconditional one, maintaining the same approximation order.

7



It is possible to verify (Barndorff-Nielsen and Cox, 1996; Vidoni, 1998) that the modified

estimative prediction limit

rα(ω̂, t) + a(α, ω̂, t),

where a(α, ω, t) = −c(α, ω, t)/f(rα|t;ω), reduces the coverage error to order o(M−1). How-

ever, since the computation of the modifying term can be troublesome, Ueki and Fueda

(2007) obtained the following asymptotic equivalent expression

a(α, ω, t) = −c(α, ω, t)/f(rα|t;ω) = rα(ω, t)− rα̂(ω,t)(ω, t) + o(M−1),

which gives the improved prediction limit

r̃α(ω̂, t) = rα(ω̂, t) + rα(ω̂, t)− rα̂(ω̂,t)(ω̂, t) = 2rα(ω̂, t)− rα̂(ω̂,t)(ω̂, t) .

Here the notation α̂(ω̂, t) means

α̂(ω̂, t) = EY |T [F{rα(ω̂, T )|T ;ω}|T = t] |ω=ω̂ ,

i.e. the evaluation at ω̂ takes place after computing the expected value. This task can be

performed by means of a suitable parametric bootstrap procedure conditional on T = t.

Fonseca et al. (2012) complete the Ueki and Fueda’s procedure by defining the predictive

distribution function which gives the improved prediction limit r̃α(ω̂, t) as its α-quantile, for

all α ∈ (0, 1). Neglecting terms of order o(M−1), it corresponds to

F̃ (r|t;Y ) = F (r|t; ω̂) + f(r|t; ω̂)
[
F−1{α̂(ω̂, t)|t; ω̂}|α=F (r|t;ω̂) − r

]
, (6)

where F−1{α̂(ω̂, t)|t; ω̂} depends on α through α̂(ω̂, t).

3 Prediction of random effects

As emphasized in Section 2.1, our objective is to provide a relatively simple procedure for pre-

dicting random effects, and in particular some associated one-dimensional transformations,

by means of prediction intervals with good coverage properties.

Starting from the conditional density f(r|yi;ω) for the interest quantity R, as defined

by (3), an obvious choice is to take as the transitive statistic of Section 2.2 the observed
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value of T = Yi. Let us assume that the numerator of (3) may be specified explicitly, while

the denominator Li(ω; yi) has to be computed using numerical or analytical approximation

techniques. In particular, a simple application of the Laplace formula (see, for example,

Barndorff-Nielsen and Cox, 1989, Chapter 6) gives the following approximation Li(ω; yi) =

L̄i(ω; yi){1 + e(ω, yi)}, with

L̄i(ω; yi) =
(2π)m/2q(ūi; γ)

∏ni

j=1 p(yij|ūi; δ)
det{I(ūi;ω)}

. (7)

Here, ūi is the (unique) minimum of function − log
∏ni

j=1 p(yij|ui; δ) with respect of ui in the

interior of U and I(ūi;ω) is a matrix with (s, v)-element −∂2 log
∏ni

j=1 p(yij|ui; δ)/∂uis∂uiv,

s, v = 1, . . . ,m, evaluated at ui = ūi. Notice that, since − log
∏ni

j=1 p(yij|ui; δ) = O(ni), the

error term e(ω, yi) is of order O(n−1i ), as ni →∞. An alternative application of the Laplace

formula is also possible, if we consider the integrand in (2) written in a fully exponential

form and we specify the (unique) minimum of function − log
∏ni

j=1 p(yij|ui; δ)− log q(ui; γ),

instead. The approximation is asymptotically equivalent to the previous one, but it lacks

invariance with respect to transformations of ui.

Although the Laplace approximation is often very accurate, there is a relative error term

which may not be negligible, if ni is small. On the other hand, it is usually possible to

approximate the i-th likelihood component Li(ω; yi) also by means of accurate numerical

techniques, as done for the logistic model presented in Section 5.2. In the following calcu-

lations, we shall consider explicitly the two components of the coverage error term, namely

that one related to the approximate evaluation of Li(ω; yi) and that one induced by the

estimative procedure. As in Booth and Hobert (1998), we assume that the dimension ni,

i = 1, . . . , k, of the k groups is bounded, so that the asymptotic expansions are computed

assuming k →∞. In other words, the number of groups k plays the role of the asymptotic

index M in the results of Section 2.2.

We shall consider prediction limits obtained from the approximate density f̄(r|yi;ω),

specified from (3) by substituting Li(ω; yi) with L̄i(ω; yi). Since Li(ω; yi) = L̄i(ω; yi){1 +

e(ω, yi)}, it is easy to see that f̄(r|yi;ω) = f(r|yi;ω){1 + e(ω, yi)} and that the associated

distribution function corresponds to F̄ (r|yi;ω) = F (r|yi;ω){1 + e(ω, yi)}. The (approxi-

mate) estimative prediction limit r̂α = rα(ω̂, yi) is obtained from rα(ω, yi) = F̄−1(α|yi;ω)
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by substituting ω with ω̂. Following the procedure outlined in Section 2.2, we find that the

corresponding conditional coverage probability is

α̂(ω, yi) = EY |Yi [F{r̂α|Yi;ω}|Yi = yi] = EY |Yi
[
F̄{r̂α|Yi;ω}|Yi = yi

]
{1 + e(ω, yi)}−1

= α + c̄(α, ω, yi) + o(k−1), (8)

where

c̄(α, ω, yi) =
c(α, ω, yi)− α e(ω, yi)

1 + e(ω, yi)
, (9)

with c(α, ω, t) given by (5) with t = yi and F̄ (·) instead of F (·). Using a result outlined in

Vidoni (2006, Appendix B), we find that, since ni is bounded, c(α, ω, yi) = O(k−1) and the

remainder term in (8) is of order o(k−1). Notice that, in this case, the first-order coverage

error term depends on both the error c(α, ω, yi), due to the estimative procedure, and the

error e(ω, yi) related to the approximation mentioned before.

Whenever the normalizing constant Li(ω; yi) is explicitly known, or accurately estimated

with numerical procedures that lead to negligible error, we have that e(ω, yi)
.
= 0 and r̂α is

the α-quantile of the true estimative distribution function F (r|yi; ω̂). As a matter of fact, in

both cases, the conditional coverage probability of the (approximate) estimative prediction

limit differs from the target nominal value α by an error term which can be substantial for

small values of k, and a suitable correction is usually needed for making accurate prediction

statements. Under this respect, we prove that the Ueki and Fueda’s procedure improves the

estimative one and it gives a simple solution for improved random effects prediction.

As stated in Section 2.2, the improved prediction limit may be expressed as

r̃α(ω̂, yi) = 2rα(ω̂, yi)− rα̂(ω̂,yi)(ω̂, yi), (10)

and it corresponds to the α-quantile of the predictive distribution function (6) with t = yi

and, eventually, F̄ (·) substituted for F (·). Since the estimative coverage probability α̂(ω, yi)

is usually unknown, we may consider an estimate based on a suitable bootstrap parametric

technique conditional on Yi = yi.

We prove that the coverage error of the modified prediction limit r̃α = r̃α(ω̂, yi) is reduced

with respect to that of the estimative solution. Using relation (8) and the fact that

r̃α = r̂α −
c̄(α, ω̂, yi)

f̄(r̂α|yi; ω̂)
+ o(k−1),
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we obtain, by means of a simple stochastic expansions around r̃α = r̂α, that the conditional

coverage probability of r̃α is

EY |Yi [F{r̃α|Yi;ω}|Yi = yi] = α̂(ω, yi)− c̄(α, ω, yi)
f(rα|yi;ω)

f̄(rα|yi;ω)
+ o(k−1)

= α + c̄(α, ω, yi)
f̄(rα|yi;ω)− f(rα|yi;ω)

f̄(rα|yi;ω)
+ o(k−1)

= α + c̄(α, ω, yi)
e(ω, yi)

1 + e(ω, yi)
+ o(k−1). (11)

Comparing (11) with (8), we conclude that the coverage error term of the modified prediction

limit r̃α is still of order O(k−1), but it is uniformly lower than that one of the estimative

prediction limit r̂α. Moreover, when Li(ω; yi) is explicitly known, or an accurate numerical

estimate is available, the term e(ω, yi) is null or close to zero and the O(k−1) order term in

(11) vanishes. Thus, in this case, the asymptotic order of the coverage error of the modified

prediction limit r̃α is o(k−1), lower than that of the estimative solution.

4 Application to generalized linear mixed models

This section applies the general theory introduced above for improved random effects pre-

diction in GLMMs. We also cover the important issue of preventing degenerate estimation

of variance components.

4.1 Preliminaries

An interesting application of the theoretical findings presented in the previous section con-

cerns the case of GLMMs. These models represent an extension of generalized linear mod-

els, including random effects into the linear predictor; McCulloch at al. (2008) provide an

overview. In this framework, the responses Yij, j = 1, . . . , ni, in the i-th group, i = 1, . . . , k,

have conditional density functions of the form

pij(yij|ui; β, λ) = c(λ, yij) exp[λ{yijθij −K(θij)}], yij ∈ Y ⊆ R, (12)

where θij = xTijβ + zTijui is the linear predictor, with xij = (xij1, . . . , xijq)
T and zij =

(zij1, . . . , zijm)T known covariate values, and β = (β1, . . . , βq)
T an unknown q-dimensional
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parameter. Here λ ∈ Λ ⊆ R+ is the index parameter, whereas σ2 = 1/λ is the dispersion

parameter. According to the notation introduced in Section 2.1, δ = (βT , σ2)T .

The model function (12) corresponds to a reproductive exponential dispersion model (see

Jørgensen, 1997, Chapter 3) with mean µij = µ(θij) = dK(θij)/dθij and variance σ2V (µij),

where the variance function V (µij) = d2K(θij)/dθ
2
ij|θij=θ(µij), with θ(·) the inverse of µ(·).

The class of GLMMs is obtained by considering a monotonic differentiable link function g(·)

such that g(µij) = xTijβ + zTijui. Moreover, µij = g−1(xTijβ + zTijui) and θij = θ{g−1(xTijβ +

zTijui)}, with g−1(·) the inverse of g(·). If the canonical link function g(·) = θ(·) is considered,

we obtain θij = xTijβ + zTijui.

With regard to the random effects, we assume that Ui = (Ui1, . . . , Uim)T , i = 1, . . . , k,

follows a m-dimensional Gaussian distribution with null mean vector and Σ as variance ma-

trix. For the notable case where the components Uis, s = 1, . . . ,m are independent Gaussian

random variables with mean 0 and variance σ2
s , according to the notation introduced previ-

ously γ = (σ2
1, . . . , σ

2
m)T denotes the vector of the variance components, so that the model

parameter corresponds to ω = (δT , γT )T .

As already emphasized, this article concerns prediction of one-dimensional transforma-

tions R = R(Ui, ω) of the random effects Ui and here we consider, in particular, a linear com-

bination of the form xTijβ+ zTijUi, or the corresponding mean response R = g−1(xTijβ+ zTijUi).

In this particular situation, assuming Gaussian random effects, the conditional density of R

given Yi = yi, specified by (3), simplifies to

f(r|yi, ω) =
f(r;ω)

∏ni

j=1 c(λ, yij) exp[λ{yijg(r)−K(g(r))}]
Li(ω; yi)

. (13)

The function f(r;ω) is the marginal density of R, which may be computed explicitly since the

linear combination xTijβ+ zTijUi follows a Gaussian distribution with mean xTijβ and variance

equal to
∑m

s=1 z
2
ijsσ

2
s , whenever the components Uis, s = 1, . . . ,m, are independent.
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4.2 Prediction based on the CMSEP

The CMSEP, proposed by Booth and Hobert (1998) for R = R(ui, ω) = xTi β+ zTi ui, has the

following form

CMSEP(ω; yi) = EY |Yi
[
{R(ûi, ω̂)−R(ui, ω)}2|Yi = yi

]
.

Booth and Hobert showed that it can be written as

CMSEP(ω; yi) = VarY |Yi(R|Yi = yi) + EY |Yi
[
{R(ûi, ω̂)−R(ûi(ω), ω)}2|Yi = yi

]
,

where the first term on the right hand side has order O(1) and the second has order O(k−1).

The latter, denoted by v(ω, yi), accounts for the estimation of ω, and it can be approximated

by a first-order Taylor expansion, so that

v(ω, yi) =

{
∂R(ûi(ω), ω)

∂ω

}T
j(ω; y)−1

{
∂R(ûi(ω), ω)

∂ω

}
, (14)

with j(ω; y) denoting the observed Fisher information matrix at ω. Finally, the CMSEP has

to be evaluated at ω = ω̂, and this introduces a bias of order O(k−1) in V̂arY |Yi(R|Yi = yi).

The main order of such bias can be removed by a conditional parametric bootstrap, that is

the same resampling scheme required by the improved prediction limits (10).

The α-level prediction limit based on the CMSEP method has the simple form

r(C)
α (ω̂, yi) = ûi + qα

√
CMSEP(ω̂; yi) , (15)

with qα the α-quantile of the standard normal distribution. In the following, the method

employing formula (15) will be refereed to as the Booth and Hobert CMSEP (BHC) method.

4.3 Avoiding boundary estimates of variance components

A serious problem with random effects prediction is that maximum likelihood estimation may

give zero estimates for variance components, leading to total shrinkage for the estimative

and improved prediction intervals. The literature presents some proposals addressing this

issue, such as the Adjustment for Density Maximization (ADM) method (Morris, 2006; Li

and Lahiri, 2010; Morris and Tang, 2011) or the penalized likelihood approach proposed by
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Chung et al. (2013) for random-intercept linear mixed models, extended to general linear

mixed models in Chung et al. (2015). The ADM and the penalized likelihood approach are

strictly connected, as pointed out in Chung et al. (2013), and actually the extension of the

ADM approach to random effects survival models proposed in Ha et al. (2013) could be

considered as an extension of the penalized likelihood approach.

The penalized likelihood approach suits well the proposal of this paper, and it is worth

considering. The idea is to penalize the likelihood function for the data at hand with a

suitable density for the variance components, obtaining the penalized log likelihood

`p(δ, γ) =
k∑
i=1

logLi(δ, γ; yi) + log p(γ) . (16)

For choosing the penalty term p(γ), the two papers by Chung and co-workers provide some

guidelines, leading to estimated variance components that are always finite, but nonetheless

close to the maximum likelihood estimate. For example, for random intercepts linear mixed

models, a suitable penalty term for the random effects variance σ2
1 can be obtained by taking

p(σ2
1) as the gamma density Ga(α, λ), with α = 1.5 and λ→ 0. Chung et al. (2013) showed

that such choice keeps the estimated value of σ1 within one estimated standard error from the

maximum likelihood estimate. This choice has some further properties, such as an interesting

connection with REML estimation, but for the aims of this paper the important point is that

the O(1) penalty term introduced in (16) does not affect the asymptotic properties of the

estimator; see Chung et al. (2013, §4.2). The implication is that the results on Section 3

remain valid when the maximizer of `p(δ, γ) is used in place of the maximum likelihood

estimate, and the form of the prediction limit (10) is exactly the same.

5 Results for Gaussian and logistic mixed models

5.1 Gaussian models

We consider an important special case of linear mixed models. In this context it is possible

to highlight the nature of the correction introduced by the prediction limit (10), in order to

account for the additional variability introduced by the plug-in procedure and to improve
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the coverage accuracy. Moreover, we compare our correction to the BHC method. Although

the calculations concern the simple case of a normal linear model with random intercepts,

we conjecture that the conclusions may have, to some extent, a general validity.

According to the notation of Section 4.1, let us assume that the random variables Yij

given Ui = ui, i = 1, . . . , k, j = 1, . . . , ni, are mutually independent normally distributed with

mean µij ∈ R and variance σ2 > 0, and we take R = xTijβ+ zTijUi. Using standard properties

of the normal distribution, it readily follows that the conditional distribution of the mean

response R given Yi = yi is Gaussian with mean µR|Yi = xTijβ + zTij ΣZT
i ∆−1(yi −Xi β) and

variance σ2
R|Yi = zTij(Σ−ΣZT

i ∆−1 Zi Σ)zij. Here, Σ = diag(σ2
1, . . . , σ

2
m), Xi = (xi1, . . . , xini

)T ,

Zi = (zi1, . . . , zini
)T and ∆ = Zi ΣZT

i + diag(σ2, . . . , σ2).

Let us consider, as a special case, the normal linear model with a random intercept. In

this case, m = 1, zij ≡ 1 and Σ = σ2
1. It follows that

µR|Yi = xTijβ +
γi
ni

ni∑
j=1

(yij − xTijβ), σ2
R|Yi = γi σ

2/ni, (17)

with γi = σ2
1/(σ

2
1 + σ2/ni). Then, the distribution and the density functions of R given

Yi = yi are, respectively, F (r|yi;ω) = Φ{(r − µR|Yi)/σ
2
R|Yi} and f(r|yi;ω) = σ−1R|Yiφ{(r −

µR|Yi)/σR|Yi}, with Φ(·) and φ(·) denoting the standard normal distribution and density

functions. Furthermore, the estimative α-prediction limit is r̂α = rα(ω̂, yi) = µ̂R|Yi + qα σ̂R|Yi ,

where the hat denotes, as usual, evaluation at ω = ω̂. As stated previously, ω̂ is the maximum

likelihood estimate or its counterpart obtained from the penalized log likelihood (16).

Although it is computationally convenient to calculate the improved prediction limit

using formula (10), in order to investigate the nature of the modifying term, we consider the

following asymptotic equivalent expression

r̃α(ω̂, yi) = r̂α −
c(α, ω̂, yi)

σ̂−1R|Yiφ{(r̂α − µ̂R|Yi)/σ̂R|Yi}
, (18)

where c(α, ω̂, yi) is given by (5) with ω̂ and yi substituted for ω and t. As in Booth and

Hobert (1998), we assume that ni, i = 1, . . . , k, is bounded, so that c(α, ω, yi) = O(k−1).

With simple algebra (details in Appendix A) we find that, neglecting terms of order o(k−1),

r̃α(ω̂, yi)
.
= µ̂R|Yi − η1(ω̂, yi) + qα

√
σ̂2
R|Yi − η2(ω̂, yi) + η3(ω̂, yi) + ε(α, ω̂, yi) . (19)
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Here η1(ω, yi)
.
= EY |Yi(µ̂R|Yi − µR|Yi |Yi = yi) and η2(ω, yi)

.
= EY |Yi(σ̂

2
R|Yi − σ

2
R|Yi|Yi = yi) are

the first-order conditional bias terms of µ̂R|Yi and σ̂2
R|Yi , as plug-in estimators for µR|Yi and

σ2
R|Yi , respectively. Namely, η3(ω, yi) = v(ω, yi) in (14), and η2(ω, yi) is the further additional

correction for the conditional bias of the plug-in estimator of σ2
R|Yi . Finally, the last quantity

ε(α, ω̂, yi) is of order O(k−1) and it involves the quantile qα to a power greater than one.

This result, though related to a simple linear Gaussian mixed model, is very useful since

it helps to clarify some general issues concerning random effects prediction by means of

prediction intervals. First, even for Gaussian models, a prediction limit involving the bias

correction for µ̂R|Yi and both the bias and the variance corrections for σ̂2
R|Yi , as defined

by Booth and Hobert (1998), does not improve properly over the estimative solution. In

particular, the conditional coverage error is still of order O(k−1) and it could be not negligible.

Furthermore, since the improved prediction limit r̃α(ω̂, yi) differs from a Gaussian quantile,

the improved predictive distribution may have a density function quite different from a

Gaussian one, e.g. a density with fatter tails, as in this case.

A further interesting point concerns the relation between the dimension ni of the i-th

group and the coverage error term c(α, ω, yi) of the estimative prediction limit. To study this

relation we determine the order of c(α, ω, yi), assuming a more general asymptotic regime

where k → ∞, ni → ∞, i = 1, . . . , k, with ni = o(
∑k

l=1 nl). Since c(α, ω, yi) is given by

(5) with t replaced by yi, using the results presented in Appendix B, and recalling that the

conditional expected information matrix may be substituted by the unconditional one, we

find that the order is O(n
3/2
i /

∑k
l=1 nl). In the particular case of a balanced design where

ni = n̄, i = 1, . . . , k, the order corresponds to O(n̄1/2/k). Namely, the coverage error

term of the estimative prediction limit does not decrease with the group size, contrary to

what the intuition may suggest. Thus, when there is a small number k of groups and the

dimension ni of the i-th group is comparatively large, random effects prediction based on

the estimative procedure may have coverage probability far from the nominal value. In this

case, an alternative, improved prediction limit is recommendable.

Example 1: Linear model with random intercepts.

We illustrate some further points by means of a numerical example. In particular, we consider

the survey and satellite data given in full in Battese et al. (1988), already employed by many
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authors, including Booth and Hobert (1998). This is a small-area dataset, including data on

corn and soybean production for 12 Iowa counties, each comprising observations from various

segments. A random intercept model is assumed for the hectares of corn yij in segment j of

county i

yij = β0 + β1 x1ij + β2 x2ij + ui + εij ,

where x1 and x2 are the two covariates obtained from satellite data. Here i = 1, . . . , 12 and

j = 1, . . . , ni, with 1 ≤ ni ≤ 5. The goal is to predict

Ri = β0 + β1 x1i(p) + β2 x2i(p) + Ui , i = 1, . . . , 12 , (20)

where the mean values x1i(p) and x2i(p) for the i-th county are the population values of

the satellite covariates. Figure 1 reports the result of three different predictive intervals,

obtained by the estimative method, the BHC method and the improved method based on

(10), using 5,000 conditional bootstrap simulations for the latter two methods. The three

sets of prediction intervals have been computed using the penalized estimate defined by (16)

rather than the maximum likelihood estimate, as for the setting of interest there is a non-

negligible probability of zero estimate of σ2
1 in the conditional bootstrap resampling. To be

more precise, the average percentage of null estimates of σ2
1 varies between 0.1% and 6.2%

across the 12 different conditional bootstrap samples, with an average of 3.8%.

[Figure 1 about here.]

There is notable adjustment made by both the BHC method and the improved, with an

average length of prediction intervals about 15.6% and 17.5% larger in the two cases.

Simulation study 1: Linear model with random intercepts.

In order to assess the properties of the various methods, a small-scale simulation study was

performed. In particular, the same setting of the Corn and soybean data analysed above was

considered, and the actual coverages of the various methods were estimated via simulation.

Taking two different counties, a conditional simulation was performed, mirroring the same

kind of computation done for the improved prediction. In particular, 10,000 data sets were

simulated with true parameter value fixed at the observed estimate and with the data of a

given county held fixed at the observed value; the study was repeated for the two counties
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Cerro Gordo (with ni = 1) and Hardin (ni = 5). The estimated coverages of prediction

intervals for the three methods used for Figure 1 are reported in Table 1, obtained with

2,000 conditional simulations for the bootstrap-based adjustment. All the methods were

computed by employing again the penalized likelihood estimator defined by (16). Some

further computational details are reported in Appendix C.

[Table 1 about here.]

The results show the under-coverage of the estimative procedure, which is to some extent

corrected by both the BHC and the improved methods. In some cases, with small estimated

random effects variance, the CMSEP may be not computable, as either the v(ω̂, yi) term in

(14) or the bias-correction term for V̂arY |Yi(R|Yi = yi) may render the whole expression neg-

ative. In such cases, which occur rarely (less than 20 data sets in either study), the CMSEP

was computed without the higher-order adjustment. We also notice that the coverage levels

of prediction intervals for either the BHC and the improved method are below the nominal

level. This is mainly to be ascribed to the small number of groups, as confirmed by a further

simulation study performed in the case of ni = 1 with a very similar setting with enlarged

data, i.e. 24 groups of size between 1 and 5. See again Table 1.

Finally, we conclude this section by noticing that a similar study based on the ordinary

maximum likelihood estimator, discarding the data sets with the estimate of σ2
1 close to zero

in both the main simulation and the bootstrap computations, gave results similar to that

of Table 1. However, the solution based on the penalized estimator is more appealing, as it

provides a methodology which can be applied to any dataset, in an automatic fashion.

5.2 Logistic models

Logistic regression with random effects are an important instance of GLMMs, for which

random effects prediction has been considered by several authors; see, among others, Jiang

(2007, §3.6) and Skrondal and Rabe-Hesketh (2009). The problem can be challenging, as

documented by the simulation studies reported in Ten Have and Localio (1999). Differently

from the linear case, no analytic expression exists even for the simplest cases, and the relevant

theory is that reported in Section 3.
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Example 1: Logistic regression with random intercepts.

As an illustrative example, we consider the logistic-normal example already analysed by

Booth and Hobert (1998), who made use of the multicenter clinical trial data from Beitler

and Landis (1985). We adopt the same logistic model with random clinic effects for the

binary response, with linear predictor

ηij = β0 + β1 xij + ui .

Here xij is the binary treatment indicator, and Ui ∼ N(0, σ2
1) the random intercept, i =

1, . . . , 8, j = 1, . . . , ni (13 ≤ ni ≤ 73). Like in Booth and Hobert (1998), the interest is on

the conditional linear predictors for the treated, given for each clinic by Ri = β0 + β1 + Ui.

The methods of the previous sections have been applied, approximating the integrals

required for the likelihood function and the predictive distribution f(ui|yi;ω) by adaptive

Gaussian quadrature, thus (essentially) removing the error component e(ω, yi) in (9) when

computing the prediction limits with the improved method. As the percentage of data sets

with estimated random effects variance equal to zero was negligible (i.e. average percentage

equal to 0.34% across the 8 clinics), we did not make any adjustment to the ordinary maxi-

mum likelihood estimates. At any rate, as mentioned above the penalized estimation method

(16) could be adopted also for this setting. Figure 2 reports the three predictive densities

corresponding to the three methods under study, for two different clinics with different sam-

ple sizes. As reminded in Section 4.2, the predictive distribution based on the BHC method

is just a Gaussian density, with mean equal to the BLUP estimate of Ri and variance equal

to the CMSEP, in accordance with (15). The adjusted methods were obtained with 5,000

conditional bootstrap simulations; some computational details are reported in Appendix C.

[Figure 2 about here.]

The adjustments made by both the BHC method and the improved method are apparent.

Although both the two adjusted methods produce larger prediction quantiles, as they adjust

for the sample variability of the parameter estimates, it is clear that the two adjustments are

of different nature. The improved distribution (6), in particular, may deviate from symmetry

substantially, differently from the BHC method.
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Simulation study 2: Logistic regression with random intercepts.

The properties of the various methods were assessed also in this case by simulation, design-

ing a study based on the observed setting for the multicenter clinical trial data used above,

with true parameter set equal to the maximum likelihood estimate. Like for the observed

data, ordinary maximum likelihood estimation was used, discarding the data sets with zero

estimated variance. The empirical coverages were computed on the remaining data sets,

treating all the methods on an equal footing. The simulation study was repeated with dif-

ferent group sizes, using the same sizes employed for Figure 2. Like in the previous study,

conditional simulations were performed, generating data sets with the data of the i-th group

(with i = 1, 8) held fixed at the observed value. However, also some unconditional simu-

lations were performed, with data generating from the assumed model for all the groups.

In the latter case, however, the sample-by-sample improved prediction limits were still ob-

tained conditionally. In either case, 2,000 bootstrap samples were used for the adjusted

methods. Also here, the CMSEP for the BHC method was computed without the high-order

adjustment in the problematic cases, occurring in moderate number for all the settings.

[Table 2 about here.]

The simulation results show that both the BHC method and the improved one provide a

useful adjustment to the estimative procedure, removing most of its inaccuracy. The two

adjusted methods have similar coverages, though the improved method gives slightly more

symmetric coverages. As stated in Section 2.2, the unconditional coverages of both the

improved procedure and the BHC method are also quite satisfactory.

6 Discussion

This paper has proposed a novel method for frequentist prediction of parametric functions

of random effects, which combines simplicity of use with good accuracy. The only price is

merely computational, but with nowadays computing power this is not an issue in many

cases. A remarkably property of the methodology is the possibility to obtain a bonafide

predictive distribution, whose quantiles supply the prediction interval at any given level.
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In all the examples and simulation studies, a good agreement was found between the

BHC method and the proposal of this paper. To some extent, this can be explained, as

both methods improve over estimative prediction following a conditional approach, with

pronounced agreement for linear forms of R; see equation (19). However, it can be said that

the improved prediction method offers some theoretical advantages, such as the possibility to

obtain asymmetric prediction distributions (and prediction intervals), possible extension to

nonlinear specifications of R, and invariance to model parameterization. The latter property

is not satisfied by the CMSEP adjustment, as suggested by formula (14). A further factor

is the higher accuracy of the improved procedure, as displayed in formula (11). Finally, it is

should be noted that the computational cost of the two procedures is similar, as parametric

bootstrap is required for both methods. The only difference may lie in the fact that the bias

correction for the BHC method would require a smaller number of bootstrap trials, but this

seems a minor issue.

The methodology of this paper has been developed for the case of independent groups.

Extension to other designs, including crossed designs or the mixed models approach to

smoothing, would be of considerable appeal, as testified by current research (e.g. Marra and

Wood, 2012). For such complex settings, analytical solutions may play an important role,

despite their awkward nature. At any rate, the conditional approach employed here appears

of difficult generalization, and therefore unconditional solutions may be the only possibility.

Some further research on these topics is called for.

Appendix A: Formulas for the Gaussian case

We consider the normal linear model with random intercept specified in Section 4.2 and

we aim at computing the improved prediction limit r̃α(ω̂, yi) for the expected response

R = xTijβ + Ui as given by (18). We need an explicit expression for the quantity

c(α, ω, yi), defined by (5). This is obtained with a simple algebra by calculating the first

and the second partial derivatives of Φ{(r − µR|Yi)/σ
2
R|Yi} and the first partial derivatives

of log[σ−1R|Yiφ{(r − µR|Yi)/σR|Yi}], with respect to the components of the parameter vector

ω = (β1, . . . , βq, σ
2, σ2

1). In the computation we use the fact that the conditional expected
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information matrix may be substituted with the unconditional one, maintaining the same

approximation order, and that, in this case, the expected information matrix is block diag-

onal. Indeed, for the asymptotic calculations, we assume that ni, i = 1, . . . , k, is bounded,

while k → ∞. The final expression is rather long and, neglecting terms of order o(k−1), it

can be summarized as

r̃α(ω̂, yi)
.
= µ̂R|Yi−η1(ω̂, yi)+qα

{
σ̂R|Yi−

η2(ω̂, yi)

2σ̂R|Yi
+
η3(ω̂, yi)

2σ̂R|Yi

}
+ε(α, ω̂, yi)

.
= µ̂R|Yi−η1(ω̂, yi)+qα

√
σ̂2
R|Yi − η2(ω̂, yi) + η3(ω̂, yi) + ε(α, ω̂, yi),

which is exactly the result presented in Section 4.2. Quantities η1(ω, yi)
.
= EY |Yi(µ̂R|Yi −

µR|Yi |Yi = yi) and η2(ω, yi)
.
= EY |Yi(σ̂

2
R|Yi − σ

2
R|Yi |Yi = yi) are the first-order conditional bias

terms of the plug-in estimators µ̂R|Yi and σ̂2
R|Yi and correspond to

η1(ω, yi) =

q+2∑
s=1

∂µR|Yi
∂ωs

bs(ω, yi) +
1

2

q+2∑
s,v=1

∂2µR|Yi
∂ωs∂ωv

isv(ω),

η2(ω, yi) =

q+2∑
s=1

∂σ2
R|Yi

∂ωs
bs(ω, yi) +

1

2

q+2∑
s,v=1

∂2σ2
R|Yi

∂ωs∂ωv
isv(ω).

Here, bs(ω, yi) is the first-order conditional bias term of s-th component of the maximum

likelihood estimator ω̂ and isv(ω) is the (s, v)-element of the inverse of the (unconditional)

expected information matrix. Furthermore,

η3(ω, yi) =

q∑
s,v=1

isv(ω)(xijs − γix̄ijs)(xijv − γix̄ijv)

+

{
1

ni

ni∑
j=1

(yij − xTijβ)

}2{
iq+1q+1(ω)

γ2i (1− γi)2

σ4

− 2 iq+1q+2(ω)
γ3i (1− γi)
niσ4

1

+ iq+2q+2(ω)
γ4i σ

4

n2
iσ

8
1

}
,

with x̄ijr = n−1i
∑ni

j=1 xijr, r = 1, . . . , q, and it coincides with the variance correction term cal-

culated by Booth and Hobert (1998, Equation (24)). Finally, the further quantity ε(α, ω̂, yi)

is not negligible, since it is of order O(k−1), and it involves the standard normal α-quantile

qα to a power greater than one.
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Appendix B: Some results for two-index asymptotics

We consider the normal linear model with random intercept specified in Section 4.2 and

we aim at specifying the asymptotic order of the quantities required for the calculation of

the coverage error term c(α, ω, yi) of the estimative prediction limit, given by (5) with t

substituted by yi. Unlike Appendix A, we assume that k →∞, ni →∞, i = 1, . . . , k, with

ni = o(
∑k

l=1 nl).

Let us consider ω = (ω1, . . . , ωq, ωq+1, ωq+2) = (β1, . . . , βq, σ
2, σ2

1); recalling the results on

the asymptotic conditional bias and variance of the maximum likelihood estimator presented

in Vidoni (2006, Appendix B), we state that

bs(ω, yi) =

 O(1/
∑k

l=1 nl) s = 1, . . . , q

O(k−1) s = q + 1, q + 2,

isv(ω, yi) =

 O(k−1) s, v = q + 1, q + 2

O(1/
∑k

l=1 nl) otherwise.

Indeed, by considering the first and the second partial derivatives of the conditional

distribution function Φ{(r − µR|Yi)/σ
2
R|Yi} and the first partial derivatives of function

log[σ−1R|Yiφ{(r − µR|Yi)/σR|Yi}], with respect to the components of the parameter ω, and re-

calling that µR|Yi and σ2
R|Yi are given by (17), we have that

Fs(r|yi;ω) =

 O(n
1/2
i ) s = 1, . . . , q + 1

O(n
−1/2
i ) s = q + 2,

Fsv(r|yi;ω)− 2Fs(r|yi;ω)`v(ω; r, yi) =


O(n

3/2
i ) s, v = 1, . . . , q + 1

O(n
1/2
i ) s, v = q + 1, q + 2

O(n
−1/2
i ) s, v = q + 2.

Appendix C: Computational details

The computation to obtain the improved prediction limits are in principle straightforward,

but, as the method is based on parametric bootstrap, some care in its implementation is

in order. For the linear model case, we relied on the R (R Core Team, 2015) package blme
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(Dorie, 2014), which implements the penalized estimate defined by (16) for several GLMMs.

For the logistic regression case, which is more demanding, we wrote our own code based on

adaptive quadrature. A further complication for the logistic case is given by the fact that

the quantiles of the conditional distribution F−1R|Yi(α|yi;ω) are not available in close form,

but they have to be obtained by solving a nonlinear equation. To this end, the R package

nleqslv (Hasselman, 2015) was employed. A key factor for performing the simulation studies

for the improved prediction limits was given by the parallel capabilities of R, provided by

the parallel package, which is part of the standard R distribution. The predictive density

represented in Figure (2) has been obtained by computing the prediction limits over a grid

of values for α, and then proceeding to a suitable interpolation to obtain the distribution

function (6). The predictive density was then obtained by numerical differentiation of the

predictive distribution function.
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Table 1: Estimated coverages of 95% prediction intervals, with left- and right-tail 2.5% errors
in brackets. Based on 10,000 conditional simulations.

County
Cerro Gordo (ni = 1) Hardin (ni = 5)
Design based on original data (12 counties)

Method
Estimative 0.881 (0.060, 0.059) 0.891 (0.046, 0.063)

BHC 0.921 (0.040, 0.039) 0.939 (0.027, 0.034)
Improved 0.933 (0.034, 0.033) 0.927 (0.034, 0.040)

Design based on enlarged data (24 counties)
Method

Estimative 0.916 (0.044, 0.040) 0.912 (0.037, 0.050)
BHC 0.934 (0.035, 0.031) 0.934 (0.028, 0.038)

Improved 0.945 (0.028, 0.027) 0.937 (0.030, 0.033)
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Table 2: Estimated coverages of 95% prediction intervals, with left- and right-tail 2.5% errors
in brackets. Based on 10,000 simulations for each entry.

Clinic
1 (ni = 73) 8 (ni = 13)

Conditional simulationsa

Method
Estimative 0.898 (0.023, 0.078) 0.912 (0.028, 0.059)

BHC 0.954 (0.012, 0.035) 0.949 (0.026, 0.039)
Improved 0.953 (0.016, 0.031) 0.945 (0.025, 0.030)

Unconditional simulationsb

Method
Estimative 0.908 (0.044, 0.048) 0.903 (0.051, 0.046)

BHC 0.952 (0.025, 0.022) 0.943 (0.034, 0.023)
Improved 0.945 (0.027, 0.028) 0.954 (0.025, 0.021)
a The data sets with σ̂2

1
.
= 0 were 75 for the study based

on Clinic 1 and 6 for the study based on Clinic 8
b The data sets with σ̂2

1
.
= 0 were 37

28



1
0
0

1
2
0

1
4
0

1
6
0

R

C
e
rr

o
 G

o
rd

o

H
a
m

ilt
o
n

W
o
rt

h

H
u
m

b
o
ld

t

F
ra

n
k
lin

P
o
c
a
h
o
n
ta

s

W
in

n
e
b
a
g
o

W
ri

g
h
t

W
e
b
s
te

r

H
a
n
c
o
c
k

K
o
s
s
u
th

H
a
rd

in

Figure 1: Corn and soybean data: 95% prediction intervals for Ri in (20) for 12 Iowa coun-
ties, based on the estimative method (solid), BHC method (dotted) and improved method
(dashed). Dots denote point predictors.
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Figure 2: Multicenter clinical trial data: Predictive densities for Clinic 1 with n1 = 73 (left
panel) and Clinic 8 with n8 = 13 (right panel), based on the estimative method (solid), BHC
method (dotted) and improved method (dashed).
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