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SUMMARY 

The robust predictive density proposed in this paper is the analogous of the parametric 

bootstrap predictive function introduced by Harris (1989), when the maximum 

likelihood estimator is substituted by a suitable M-estimator. An useful closed form 

approximation to this new proposal is derived, which consists of approximating the 

sampling distribution of the M-estimator by the associated saddlepoint approximation 

and then using the Laplace method to evaluate the integral. By means of a simple 

comparative study, we show that this fully robust predictive procedure improves the 

usual robust predictive distributions, obtained by simply substituting the unknown 

parameter by a suitable robust estimator. 

 

Some key words: Approximate p* predictive density; Data contamination; Huber 

estimator; Laplace method; Parametric bootstrap predictive density. 

 

1. INTRODUCTION 

 

 The purpose of this paper is to define a robust predictive density for a future or 

as yet unobserved random variable in such a way that the associated prediction 

statements do not suffer seriously from data contamination. In particular, we consider 
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the simple situation where the data x xn1,...,  are independent realizations of a random 

variable X, with probability density function ( )f x dd; , ,ω ω ∈ ⊆ ≥Ω R 1. The future 

random variable Z is independent of X and has the same distribution as X, which 

depends on the unknown parameter ω . Any estimator of the true probability density 

function ( )f z;ω  of Z, based on the observable sample, is called a predictive density 

function. 

The main perspective here is to study robust predictive densities, that is 

predictive densities which present a good behavior in the presence of small deviations 

from the original model. More precisely, we assume that the data, on which the 

prediction are based, may be contaminated, while the future observation is supposed to 

come from the true model. 

The robust predictive density proposed in this paper is the analogous of the 

parametric bootstrap predictive density introduced by Harris (1989), when the 

maximum likelihood estimator is substituted by a suitable M-estimator. Unlike the 

predictive density given by Basu & Harris (1994), this new proposal is fully robust 

since it is based on the sampling distribution of the robust estimator. Indeed, an useful 

closed form approximation is derived, which consists of approximating the sampling 

distribution of the M-estimator by the associated saddlepoint approximation and then 

using the Laplace method to evaluate the integral. Preliminary results, related to a 

simple example involving the normal model, show that this fully robust predictive 

distribution constitutes an improvement over predictive distributions obtained by 

simply substituting the unknown parameter ω  with a suitable robust estimator. 

 

2. A REWIEV ON PREDICTIVE DENSITIES 

 

The simplest and most intuitive approach to prediction consists of using the 

estimative probability density function ( )f z; $ω  obtained by substituting $ω  for ω ; $ω  is 

an appropriate estimator of ω  based on the observable sample, usually the maximum 

likelihood estimator. In spite of its intuitiveness, ( )f z; $ω  may not be entirely adequate 

for prediction since, especially when the dimension of ω  is large in comparison with n, 

it may provide inaccurate prediction results. A number of recent papers aim to improve 
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the estimative density; see, for example, Harris (1989), Vidoni (1995), Komaki (1996) 

and Corcuera & Giummolè (1998). 

In particular, Harris (1989) proposed the parametric bootstrap predictive density, 

given by 

 

( ) ( ) ( )f z f z t p t dtB ; ; ; ,ω ω= ∫         (2.1) 

 

computed at ω ω= $ , where ( )p ⋅;ω  is the probability density function of the maximum 

likelihood estimator. Density (2.1) has some desirable properties; in particular, within 

natural exponential models, it is asymptotically superior to the estimative density 

( )f z; $ω  in terms of average Kullback-Leibler divergence. Unfortunately, it is usually 

not in a reasonable closed form and it needs to be computed numerically even for 

simple models. 

 Vidoni (1995) pointed out that, although Harris’s proposal is often unsuitable 

for exact calculations, it allows fairly simple approximations through straightforward 

asymptotic arguments. In particular, when $ω  is a sufficient statistic, such as within 

natural exponential models, it is possible to derive an high-order, closed form 

approximation to (2.1), which consists of approximating ( )p ⋅;ω  by Barndorff-

Nielsen’s (1983) p*-formula and then using a Laplace approximation with ( )O n−1  

correction terms for integrating out the parameter. This procedure may be extended to 

the more general case where the maximum likelihood estimator is not itself a sufficient 

statistic. 

These predictive densities are based on the maximum likelihood estimator, 

which is usually a non-robust estimator. Thus, they may give poor prediction results, 

whenever the observed data present small deviations from the assumed statistical 

model. As a first solution to this problem, Basu & Harris (1994) proposed a robust 

version for the parametric bootstrap predictive density, namely ( )f zB H; $ω . This is 

obtained by computing (2.1) at the observed value of $ωH , the minimum Hellinger 

distance estimator of ω . The sampling distribution of $ωH  cannot be computed 

explicitly and, for this reason, the weighting function which is considered is still the 
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probability density function of the maximum likelihood estimator. Since $ωH  and $ω  are 

first order equivalent, this robust version of the parametic bootstrap predictive density 

maintains the superiority over the estimative one, in terms of the average Kullback-

Liebler divergence within natural exponential models. Moreover, it may give better 

robustness results than ( )f z; $ω  and ( )f zB ; $ω , which involve the maximum likelihood 

estimator. However, since ( )f zB H; $ω  is (2.1) computed at the observed value of $ωH , it 

maintains the same computational drawbacks of the parametric bootstrap predictive 

density. Indeed, ( )f zB H; $ω  does not take into account the sampling distribution of $ωH . 

 

3. A NEW ROBUST PREDICTIVE DENSITY BASED ON M-ESTIMATORS 

 

In this section, we introduce a fully robust predictive distribution. More 

precisely, we define a robust parametric bootstrap predictive density based on a suitable 

M-estimator and its probability distribution. Unlike the predictive density given by 

Basu & Harris (1994), which involves as weighing function the density of the 

maximum likelihood estimator, this new proposal is based on the sampling distribution 

of the robust estimator. Although this distribution is usually not explicitly known, the 

associated saddlepoint approximation enables the determination of an approximate 

robust predictive density, which is accurate to third-order under ordinary repeated 

sampling. 

 An M-estimator for ω  is defined as the solution $ω M  of the system of equations 

 

( )ψ ωr i
i

n

x ; ,
=
∑ =

1

0     r d= 1,..., , 

 

where ( )ψ r ⋅  is the rth component of a suitable R d -valued function ( )ψ ⋅ . By setting 

( ) ( )ψ ω ∂ ω ∂ωr i i
rx p x; log ;= , $ω M  becomes the maximum likelihood estimator. 

 The robust parametric bootstrap predictive density based on a given M-estimator 

$ω M  is 
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( ) ( ) ( )f z f z t p t dtBM M; ; ;ω ω= ∫ ,       (3.1) 

 

computed at ω ω= $
M , where ( )pM ⋅;ω  is the probability density function of $ω M . 

Density (3.1) is usually unsuitable for exact calculations, however it allows a relatively 

simple approximation through the asymptotic arguments outlined in the following. 

It is well known that the probability density function of an M-estimator $ω M  

may be approximated by means of the general saddlepoint approximation technique 

derived by Field (1982), Field & Ronchetti (1990) and Almudevar, Field & Robinson 

(1997). Under suitable regularity assumptions, it corresponds to 

 

( ) ( ) ( ){ } ( )[ ] ( )[ ] 21
;det;det;logexp;~ −−= ωωωωω tvtwtcndtp rsrsM ,         (3.2) 

 

where 

( ) ( ) ( ){ } ( ){ } 1
;;;exp;

−

∫= dxxftxttc rr ωψωαω , 

 

( ) ( ) ( )( )T
d ttt ωαωαωα ;,,;; 1 K=  is the solution of 

 

( ) ( ) ( ){ } ( ) 0;;;exp; =∫ dxxftxttx rrs ωψωαψ ,     s d= 1,..., , 

 

and the summation notation is used. Moreover, 

 

( ) ( ){ }w t E x t trs h r
s; ;ω ∂ψ ∂= , ( ) ( ) ( ){ }v t E x t x trs h r s; ; ;ω ψ ψ= , 

 

where the expectations are with respect to the conjugate density 

 

( ) ( ) ( ) ( ){ } ( )ωψωαωω ;;;exp;,; xftxttctxh rr= . 

 

The term ( )d ω  is the normalizing constant of expression (3.2); with this choice, the 

saddlepoint approximation usually presents a relative error of order ( )O n −3 2 . 
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Thus, using (3.2) as a weighting function in (3.1), the robust saddlepoint 

predictive density can be defined as 

 

( ) ( ) ( )f z f z t p t dtS M; ; ~ ;ω ω= ∫ ,        (3.3) 

 

computed at ω ω= $
M . Function (3.3) is an approximation to the robust parametric 

bootstrap predictive density (3.1), with a relative error of order ( )O n −3 2 . This 

predictive density can be further approximated, retaining the same order of error, by 

Laplace method, giving a relatively simple closed form expression. The technique is 

similar to that used by Vidoni (1995) in order to define the approximate p* predictive 

density. The approximation is (see the Appendix for the derivation) 

 

( ) ( ) ( ){ }ωω ,;~1~;;
~

2
1 ztMtzfzf S += ,         (3.4) 

 

computed at ω ω= $
M , with ( )ωtt ~~ =  and 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 11
;~;~;~;~2;~;~;~,;~ ][ −−++= ntrtDtDztztztztztM ij

jijiij ωωωω llll  

( ) ( ) ( ) ( )− −
l i jhk

jh kit z r t r t r t n~; ~; ~; ~;ω ω ω 1 . 

 

 

Here, ( ) ( )l t z f z t; log ;=  and ( )l Im
t z~; , ( )I i im m= 1,..., , m ∈ +N , is the mth partial 

derivative with respect to the corresponding components of t, evaluated at t t= ~ . The 

minimum point ( )~ ~t t= ω  and the coefficients ( )D t~;ω , ( )D tj
~;ω , ( )r tij ~;ω  and 

( )r tjhk
~;ω  are defined in the Appendix. The term ( )M t z M

~; , $ω  is of order ( )O n−1 . 

The robust predictive density (3.4) is a modification of the estimative density 

based on ( )Mt ω̂~  and presents the same structure as the approximate p* predictive 

density (2.3) in Vidoni (1995). More precisely, with regard to the modifying ( )O n−1  

term, we can see that the coefficients differs from those of the approximate p* density, 
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while the variable terms, based on the first two partial derivatives of ( )log ;f z ω  with 

respect to ω , are the same. Moreover, within natural exponential models, if the M-

estimator equals the maximum likelihood estimator, then ( )~
; $f zS Mω  coincides, as one 

would expect, with the approximate p* predictive density. 

 

4. A NUMERICAL RESULT 

 

The robust parametric bootstrap predictive density (3.1) and the associated 

higher-order approximation ( )~
; $f zS Mω  are based on the M-estimator $ω M  and on its 

probability distribution. Thus, the robust correction of the estimative density introduced 

in this context concerns both the estimate of the unknown parameter ω  and the 

functional form of the predictive density. Therefore, this new robust predictive 

distribution is supposed to give good results under data contamination. In particular, we 

expect better results than those given by the parametric bootstrap predictive density 

(2.1) and the associated approximate p* predictive distribution, computed at ω ω= $
M . 

We shall verify these statements with regard to a simple example. 

 Let X X Zn1,..., ,  be mutually independent according to a location model with 

common probability density function ( ) ( )f x f x;µ µ= −0 , x ∈ ∈R R, µ , and ω µ= ; 

in this context, ψ -functions of the type ( ) ( )ψ ω ψ ωx x; = −0  are usually considered. In 

particular, ( ) ( ) ( )ψ ω ω ωx x b x; min ,= − −1 , with b > 0  a given constant, defines the 

Huber (1964) estimator of location $ω M , obtained as the solution of the equation 

 

( ) ( )x b xi M i M
i

n

− − =
=
∑ $ min , $ω ω1 0

1

. 

 

This estimator has robustness properties (see Hampel, Ronchetti, Rousseeuw & Stahel, 

1986, § 2.4), and, for b = +∞ , coincides with the mean. In order to define the robust 

approximate predictive density (3.4), the first step is to abtain the solution ( )α ωt;  of 
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( ) ( ) ( )( ) ( ){ } ( )x t b x t t x t b x t f x dx− − − − − =∫ min , exp ; min ,1 1 00α ω ω  

 

and then to calculate the expectations ( ) ( ){ }ttxEtw h ∂∂= ;; ψω  and 

( ) ( ){ }v t E x th; ;ω ψ= 2
, with respect to the conjugate density ( )h x t; ,ω . Once these 

functions have been computed, usually by means of numerical methods, it is not 

difficult to obtain the corresponding derivatives up to order two and to calculate the 

minimum point ( )~ ~t t= ω . By considering the first two derivatives of 

( ) ( )l t z f z t; log= −0  with respect to t, it is possible to obtain the modifying term 

( )1
2 M t z M

~; , $ω  and to define the robust approximate predictive density ( )~
; $f zS Mω . 

 As a simple application, let X X Zn1,..., ,  be mutually independent and normally 

distributed with unknown mean µ  and known variance σ 2 1=  and let us consider the 

Huber estimator $ω M . In this case, by using the procedure previously outlined, it is 

possible to determine the robust predictive density (3.4) associated to a given observed 

sample. More precisely, it is 

 

( ) ( ) { }( ) ][ 1
223

2
2
1 ~1)~~~

2)(~()~(1~;;
~ −−−−+−+= nrrrdtztztzfzf S ω ,       (4.1) 

 

computed at ω ω= $
M , with ~t = ω ; ~r2 , ~r3  and 

~
d  are, respectively, 

 

( ) ( ) ( ){ } ttwttr ∂∂−= ωωαω ;;;2 , 

( ) ( ) ( ){ } 22
3 ;;; ttwttr ∂∂−= ωωαω , 

( ) ( ){ } ( ){ } ( ){ } ( ){ } 1
2
11 ;;;;; −− ∂∂−∂∂= ωωωωω tvttvtwttwtd , 

 

evaluated at t t= ~ . Whenever b = +∞ , $ω M  coincides with the maximum likelihood 

estimator $ω = − ∑n X i
1 . Thus, in this particular instance, the equation 

 

( ) ( )( ){ }( ) ( ){ }x t t x t x dx− − − − =−
∫ exp ; expα ω π ω2 01 2 1

2
2  
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has solution ( ) ( )α ω ωt t; = −  and the conjugate density ( )h x t; ,ω  corresponds to a 

normal distribution with mean t, unit variance and normalizing constant 

( ) ( ){ }c t t; expω ω= −1
2

2 . Moreover, since in this case ~t = ω  and the determinants of 

( )v t;ω  and ( )w t;ω  correspond to unity, the robust predictive density (4.1) becomes 

 

( ) ( ){ } ][ 12

2
1 11; −−−+ nzzf ωω ,          (4.2) 

 

evaluated at ω ω= $ , which equals, as one would expect, the approximate p* predictive 

density. Since, within natural exponential models, the approximate p* predictive 

density is an approximation to the parametric bootstrap predictive density, function 

(4.2), computed at ω ω= $
H , is an approximation to the robust predictive density 

proposed by Basu & Harris (1994), whenever an underlying normal distribution is 

considered. 

Let us now discuss the results of a small simulation study for this case. We 

assume that the true model is the standard normal distribution, abbreviated as N ( , )01 , 

and that the observable data, on which the prediction are based, may be contaminated; 

the future observation is supposed to come from the true model. We consider pseudo 

random samples of size n from the 0 9 0 1 01 2. ( , ) . ( , )N N+ µ σ  distribution, with µ = 0 3,  

and σ 2 1 10= , ; ( , ) ( , )µ σ 2 0 1=  determines the uncontaminated case. All the results are 

based on 10,000 replications and the sample sizes are 20,10=n . The variance of the 

future observation is supposed to be known. For each combination, we compare the 

estimative and the approximate p* predictive densities, computed both at the observed 

value of the maximum likelihood estimator $ω  and at the observed value of the Huber 

estimator $ω M , with the new robust predictive density (4.1) evaluated at ω ω= $
M . As a 

measure of fit, we adopt the average Kullback-Liebler divergence (see, for example, 

Harris, 1989 and Basu & Harris, 1994) and we determine the ratio of the average 

Kullback-Liebler divergence of the other four methods to that of the estimative 

distribution, based on the maximum likelihood estimator. The average Kullback-Liebler 

divergences involving the estimative and the approximate p* predictive densities, 

evaluated at ω ω= $ , can be computed exactly. For the other predictive distributions, the 
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divergence is estimated by simulation. The standard error for the corresponding ratios is 

given in parentheses. 

The results are presented in Table 1. A part from the uncontaminated case, we 

observe that the robust predictive distributions perform substantially better than those 

based on the maximum likelihood estimator. With regard to the robust methods, it 

appears that the approximate p* predictive density (4.2) and the fully robust predictive 

density (4.1), computed at ω ω= $
M , improve the estimative one based on the same 

estimator. Note that, in accordance with Basu & Harris (1994), the improvement is 

greater when the contamination is location-based rather than scale-based. A direct 

comparison between the fully robust and the approximate p* predictive densities, 

computed at ω ω= $
M , shows that the first one performs slightly better in almost all the 

contamination cases. The superiority is more pronounced when the contamination 

concerns the mean of the true model, while it almost disappears when the 

contamination concerns the variance. 

 

APPENDIX 

Derivation of formula (3.4) 

 

 In order to obtain the approximate robust predictive density (3.4), we consider 

the following procedure. First, it is convenient to rewrite expression (3.3) as a ratio of 

integrals in the standard form (see Tierney, Kass & Kadane, 1989) such as 

 

( )
( ) ( ){ }
( ) ( ){ }f z

N t z r t dt

D t r t dt
S

n

n

;
; , exp ;

; exp ;
ω

ω ω

ω ω
=

−

−
∫
∫

, 

 

where ( ) ( ) ( )r t n r t n c tn ; ; log ;ω ω ω= = , ( ) ( ) ( )N t z f z t D t; , ; ;ω ω=  and 

( ) ( )[ ] ( )[ ] 21
;det;det;

−
= ωωω tvtwtD ijij . If ( )r t;ω  is smooth and presents a unique 

minimum in the interior of the domain at t t= ~  then, by applying formula (A.1) in 

Vidoni (1995) to the numerator and to the denominator, we obtain 
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( ) ( ) ( ) ( ){ } ( ){ } ( ){ }
( ) ( ){ } ( ){ } ( ){ } .

1;~;~;~1

1,;~,;~,;~1~;;
21

2
1

21

2
1

−−

−−

++++

++++
=

nOtDCtDBtDA

nOztNCztNBztNA
tzfzf

ij
nij

i
nin

ij
nij

i
nin

S
ωωω

ωωω
ω  

 

( )N t zIm

~; ,ω  and ( )D tIm

~;ω , ( )I i im m= 1,..., , m ∈ +N , are the mth partial derivatives of 

( )N t z; ,ω  and ( )D t;ω  with respect to the components of t with indices in Im , 

computed at t t= ~ . The ( )O n−1  correction terms An, Bn
i  and Cn

ij  are given by 

 

{ }A r r r r r r r n r r r nn ijh klm ihl jkm
ij hk lm

ijhk
ij hk= + −− −1

24
1 1

8
13 2~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , 

B r r r nn
i

jhk
jh ki= − −1

2
1~ ~ ~ ,  C r nn

ij ij= −~ 1, 

 

where ( )~ ~;r r tI Im m
= ω , with ( )r tIm

;ω , ( )I i im m= 1,..., , m ∈ +N , the mth partial 

derivative of ( )r t;ω , with respect to the corresponding components of t and ijr~  the 

( )ji,  element of the inverse of the matrix ( )[ ]r tij
~;ω . 

 Secondly, a further expansion for the denominator allows us to cancel An and to 

simplify some terms involving the partial derivatives of ( )N t z; ,ω  and ( )D t;ω . Thus, 

with the quantities Bn
i  and Cn

ij  given explicitly, the approximation (3.4) is obtained. 

 Since, from the definition of ( )α ωt;  it follows that 

( ) ( ) ( )α ω ψ ωr i rt x t h x t dx, ; ; ; , =∫ 0 , i d= 1,..., , the partial derivatives of ( )r t;ω  may be 

expressed explicitly giving, 

 

( ) ( ) ( )r t t w ti r ir; ; ;ω α ω ω= − , 

( ) ( ) ( ) ( ) ( ){ }r t t w t t w tij r j ir r ir j; ; ; ; ;, ,ω α ω ω α ω ω= − + , 

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ){ }r t t w t t w t t w tijh r jh ir r j ir h r ir jh; ; ; ; ; ; ;, , , ,ω α ω ω α ω ω α ω ω= − + +2 , 

 

where ( )α ωr Im
t, ;  and ( )w tir Im, ;ω , ( )I i im m= 1,..., , m ∈ +N , are the mth partial 

derivatives of ( )α ωr t;  and ( )w tir ;ω  with respect to the corresponding components of t 
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and [ ]2  indicates a sum of two terms obtained by permutation of the indices j and h. 

The minimum ( )~ ~t t= ω  is such that ( )r ti
~;ω = 0, i d= 1,..., , and that ( )[ ]r tij

~;ω  is a 

positive definite matrix. Furthermore, using the differentiation rule for determinants, it 

follows that 

 

( ) ( ){ } ( ) ( ) ( ) ( )D t D t w t w t v t v tj
rs

rs j
rs

rs j; ; ; ; ; ;, ,ω ω ω ω ω ω
−

= −
1 1

2 , 

 

where ( )ω;, tv jrs , is the partial derivative of ( )ω;tvrs  with respect to the jth component 

of t and ( )w trs ;ω  and ( )v trs ;ω  indicate the ( )r s,  elements of the inverse of the 

matrices ( )[ ]w trs ;ω  and ( )[ ]v trs ;ω , respectively. 

The Laplace expansion used in this context, assures that (3.4) is an 

approximation, with relative error of order ( )O n −2 , to ( )f zS M; $ω  and, with relative 

error of order ( )O n −3 2 , to ( )f zBM M; $ω . As a consequence of the balance relations 

linking the joint moments of the derivatives ( )l Im
t z; , this approximation is a 

probability density function, since it is exactly normalized. 
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