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SUMMARY

The robust predictive density proposed in this paper is the analogdus mdraametric
bootstrap predictive function introduced by Harris (1989), when the nnusi
likelihood estimator is substituted by a suitable M-estimator.useful closed form
approximation to this new proposal is derived, which consists of appatrg the
sampling distribution of the M-estimator by the associated spoidieapproximation
and then using the Laplace method to evaluate the integral. By méansimple
comparative study, we show that this fully robust predictive procedyseoves the
usual robust predictive distributions, obtained by simply substitutingutik@own
parameter by a suitable robust estimator.

Some key words: Approximate p* predictive density; Data contamination; Huber

estimator; Laplace method; Parametric bootstrap predictive density.
1. INTRODUCTION
The purpose of this paper is to define a robust predictive deosigyftiture or

as yet unobserved random variable in such a way that the asdopigdiction

statements do not suffer seriously from data contamination. Inydartieve consider



the simple situation where the data...,x, are independent realizations of a random

variable X, with probability density functionf (x; a)), wOQORY d>1. The future

random variableZ is independent oKX and has the same distribution 4s which

depends on the unknown parameter Any estimator of the true probability density
function f(z; a)) of Z, based on the observable sample, is called a predictive density

function.

The main perspective here is to study robust predictive denditiast,is
predictive densities which present a good behavior in the presencealbdsmations
from the original model. More precisely, we assume that the datayhich the
prediction are based, may be contaminated, while the future obsergasiopposed to
come from the true model.

The robust predictive density proposed in this paper is the anmsogf the
parametric bootstrap predictive density introduced by Harris (1988gnwthe
maximum likelihood estimator is substituted by a suitable Myegor. Unlike the
predictive density given by Basu & Harris (1994), this new propisséllly robust
since it is based on the sampling distribution of the robust estimiatieed, an useful
closed form approximation is derived, which consists of approximat@gampling
distribution of the M-estimator by the associated saddlepoint appativn and then
using the Laplace method to evaluate the integral. Preliminanjtse related to a
simple example involving the normal model, show that this fully rolpustlictive
distribution constitutes an improvement over predictive distributions reataby

simply substituting the unknown parameterwith a suitable robust estimator.
2. AREWIEV ON PREDICTIVE DENSITIES

The simplest and most intuitive approach to prediction consists of tisen
estimative probability density functioh(z; c?)) obtained by substituting) for «; @ is
an appropriate estimator @ based on the observable sample, usually the maximum
likelihood estimator. In spite of its intuitivenesﬁ(z; c?)) may not be entirely adequate

for prediction since, especially when the dimensiom.of large in comparison with,

it may provide inaccurate prediction results. A number of rgu@pérs aim to improve



the estimative density; see, for example, Harris (1989), Vidoni (18@B)aki (1996)
and Corcuera & Giummolé (1998).
In particular, Harris (1989) proposed the parametric bootstrap predictive ¢gensity

given by
fo(za) = [ f(zt)p(t; ), 2.1)

computed aiw = @, where p( Da)) is the probability density function of the maximum

likelihood estimator. Density (2.1) has some dé&sé&agroperties; in particular, within
natural exponential models, it is asymptoticallypesior to the estimative density
f(z; cZ)) in terms of average Kullback-Leibler divergencenfdtunately, it is usually
not in a reasonable closed form and it needs t@dmeputed numerically even for
simple models.

Vidoni (1995) pointed out that, although Harrigsposal is often unsuitable
for exact calculations, it allows fairly simple apgimations through straightforward
asymptotic arguments. In particular, when is a sufficient statistic, such as within

natural exponential models, it is possible to derian high-order, closed form

approximation to (2.1), which consists of approximg p( Da)) by Barndorff-

Nielsen’s (1983)p*-formula and then using a Laplace approximatiomv\ﬂl(n‘l)

correction terms for integrating out the parameiéis procedure may be extended to
the more general case where the maximum likelirestoinator is not itself a sufficient
statistic.

These predictive densities are based on the maxiiketihood estimator,
which is usually a non-robust estimator. Thus, they give poor prediction results,
whenever the observed data present small deviafimm the assumed statistical

model. As a first solution to this problem, BasuH&arris (1994) proposed a robust
version for the parametric bootstrap predictive sitgn namely fB(z;c?)H). This is
obtained by computing (2.1) at the observed valigog, the minimum Hellinger
distance estimator ofe. The sampling distribution ofw, cannot be computed

explicitly and, for this reason, the weighting ftioo which is considered is still the



probability density function of the maximum likelihood estimator. Siag and @ are
first order equivalent, this robust version of the parametic bootsteaictive density
maintains the superiority over the estimative one, in terms oavkeage Kullback-

Liebler divergence within natural exponential models. Moreover, i giae better

robustness results thah(z; c?)) and f,(z @), which involve the maximum likelihood

estimator. However, sincéB(z; c?)H) is (2.1) computed at the observed valuenf, it
maintains the same computational drawbacks of #ranpetric bootstrap predictive

density. Indeed,fB(z; c?)H) does not take into account the sampling distrisutf ¢, .

3. ANEW ROBUST PREDICTIVE DENSITY BASED ON M-ESTIMTORS

In this section, we introduce a fully robust préishe distribution. More
precisely, we define a robust parametric bootgtraglictive density based on a suitable
M-estimator and its probability distribution. Undikthe predictive density given by
Basu & Harris (1994), which involves as weighingndtion the density of the
maximum likelihood estimator, this new proposabased on the sampling distribution
of the robust estimator. Although this distributienusually not explicitly known, the
associated saddlepoint approximation enables therrdimation of an approximate
robust predictive density, which is accurate taddarder under ordinary repeated
sampling.

An M-estimator fore is defined as the solutio@,, of the system of equations

where (//r(E)] is therth component of a suitablR® -valued functionz/l([)]. By setting

Y. ()g ;a)) =Jlog p(xi ;a))/o"a)r , @, becomes the maximum likelihood estimator.

The robust parametric bootstrap predictive dersatsed on a given M-estimator

A
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f e (z; a)) = j f(z;t)pM (t;a))dt, (3.1

computed atw = @,,, where pM(EJa)) is the probability density function of,, .

Density (3.1) is usually unsuitable for exact cidtons, however it allows a relatively
simple approximation through the asymptotic argushentlined in the following.
It is well known that the probability density fuian of an M-estimator,,

may be approximated by means of the general sanldleppproximation technique
derived by Field (1982), Field & Ronchetti (199@)daAlmudevar, Field & Robinson
(1997). Under suitable regularity assumptionspitesponds to

P (t; w) = d(w)exd - nloge(t; wl{defw, (t; w)]|defv,. (t; a))]|_j/2 , (3.2)

where

oft;) = {[ exdr, (ol () f ()™,
a(t;w) = (a,(t;w)....,a,(t;w))" is the solution of
j(//s(x;t)exp{ar (o, (xt) f(xw)dx=0, s=1,..d,
and the summation notation is used. Moreover,
w,(t;w) = Eh{o"(//r (x;t)/o"ts} , v, (t;w) = Eh{z//,(x;t)(//s(x;t)} ,
where the expectations are with respect to theugag density
h(x;t, a)) = c(t; a))exp{crr (t; a))t//r (x;t)} f (x; a)).

The termd(w) is the normalizing constant of expression (3.2thwhis choice, the

saddlepoint approximation usually presents a kedagiror of ordeIO(n‘”) .



Thus, using (3.2) as a weighting function in (3.1), the robust saddlepoint

predictive density can be defined as
fs(z; a)) :jf(z;t)'ﬁM (t;a))dt, (3.3)

computed atw = @,,. Function (3.3) is an approximation to the robust parametric

bootstrap predictive density (3.1), with a relative error of ord)én‘”). This

predictive density can be further approximated, retaining the sades of error, by
Laplace method, giving a relatively simple closed form expsassihe technique is
similar to that used by Vidoni (1995) in order to define the approxipfaggedictive

density. The approximation is (see the Appendix for the derivation)

fo(zw)= f(zTf1+iM(0; 2w}, (3.4)
computed aiw = @, , with t =t (w) and

M(E;zw)=[r,([E:2)+ ¢, (T2, (T 2)+2¢, (T 2D, (T 0 D(E; ) ] (T o)™

— 0T (T ) (T ) (T )™

Here, #(t;2) =log f(zt) and ¢, (£;2), 1, =(i1,..in) » MON, is themth partial
derivative with respect to the corresponding conems oft, evaluated at =t . The
minimum point £ =t(w) and the coefficientsD(t;w), D,(T;w), r'(f;ew) and
r(T;c) are defined in the Appendix. The tem‘h(f; z, c?)M) is of ordero(n™).

The robust predictive density (3.4) is a modifioatiof the estimative density

based onf(c?)M) and presents the same structure as the approxphapeedictive

density (2.3) in Vidoni (1995). More precisely, itegard to the modifyingD(n‘l)

term, we can see that the coefficients differs ftbose of the approximap® density,



while the variable terms, based on the first two partial devies of log f (z;a)) with
respect tow, are the same. Moreover, within natural exponential models, if the M-
estimator equals the maximum likelihood estimator, tﬁg(z; c?)M) coincides, as one

would expect, with the approximgbé predictive density.
4. ANUMERICAL RESULT

The robust parametric bootstrap predictive dengdyl) and the associated
higher-order approximatiorfs(z; c?)M) are based on the M-estimatay, and on its
probability distribution. Thus, the robust correctiof the estimative density introduced
in this context concerns both the estimate of th&nown parametere. and the
functional form of the predictive density. Therefprthis new robust predictive
distribution is supposed to give good results urtda contamination. In particular, we
expect better results than those given by the patraanbootstrap predictive density
(2.1) and the associated approximgtepredictive distribution, computed @ = @,, .
We shall verify these statements with regard torgple example.

Let X,,..., X,,,Z be mutually independent according to a locatiordehavith
common probability density functior (x; ,u) = fO(X—/J) , XxOR, u0OR, and « = u;
in this context,y-functions of the typey(x;w) = ¢,(x - w) are usually considered. In
particular, (//(x; a)) =(x-w) min(l,b/lx—wl), with b>0 a given constant, defines the

Huber (1964) estimator of locatiaf,, , obtained as the solution of the equation

(x - &, ) min(Lb/|x - d,)) = 0.

n
i=1

This estimator has robustness properties (see HaRpechetti, Rousseeuw & Stahel,
1986, § 2.4), and, fdp =+, coincides with the mean. In order to define tblust

approximate predictive density (3.4), the firspsito abtain the solution(t; w) of



j(x —t) min(Lb/|x - t]) exp{a(t w)(x—t) mif1b/|x - t|)} fo(x-w)dx=0

and then to calculate the expectationsMt;w)=E,{ow(xt)/dt} and

v(t;w) = Eh{l/l(x;t)z} , with respect to the conjugate denstifx;t,w). Once these

functions have been computed, usually by meansuofenical methods, it is not
difficult to obtain the corresponding derivativeg to order two and to calculate the

minimum point t =t(w). By considering the first two derivatives of
(t;2) =log f,(z—t) with respect tat, it is possible to obtain the modifying term
3 M(f;z, c?)M) and to define the robust approximate predictivesdg Fs(z; Wy )

As a simple application, lexX,,..., X, ,Z be mutually independent and normally
distributed with unknown meap and known variancer® =1 and let us consider the

Huber estimator@, . In this case, by using the procedure previousiired, it is

possible to determine the robust predictive der(§i#§) associated to a given observed
sample. More precisely, it is

fzw)= fzT) 1+ {z- D2 +@-Ded -7/ -4En) "], @y
computed atw = &, , with T =w; 7, F, andd are, respectively,

r,(t; w) = -¥{al(t; wwt; w)} /ot
ry(t; w) = —0¥{a(t; wwt; w)}/0t?
{owlt; w)/athw(t; w)} ™ —2{ovt; w)/athu(t; w)} ™,

d(t; w)

evaluated att =t . Wheneverb =+, @, coincides with the maximum likelihood

estimator@ = n‘lz X, . Thus, in this particular instance, the equation

j(x—t)exy:{ at ;cu)(x—t)}(Zn)‘j/2 ex;{—%(x— a))z}dx =0



has solutiona(t;a)) =(t-w) and the conjugate densiﬂy(x;t,a)) corresponds to a

normal distribution with meant, unit variance and normalizing constant

c(t; w) = exp{%(a)—t)z} . Moreover, since in this cage= w and the determinants of

v(t;a)) and w(t; a)) correspond to unity, the robust predictive density (4.1) becomes

f(z a))[1+%{(z—a))2 —1}n’1], (4.2)

evaluated atw = @, which equals, as one would expect, the approxiptapredictive
density. Since, within natural exponential modelse approximatep* predictive
density is an approximation to the parametric tomps predictive density, function
(4.2), computed atw=w,, is an approximation to the robust predictive dgns
proposed by Basu & Harris (1994), whenever an uyider normal distribution is
considered.

Let us now discuss the results of a small simulagtudy for this case. We
assume that the true model is the standard noristaibdition, abbreviated asl(0,1) ,
and that the observable data, on which the predicre based, may be contaminated;

the future observation is supposed to come fromtrilie® model. We consider pseudo

random samples of sizefrom the ON( Q)+ ON (u,0?) distribution, with =0, 3

and o° =1, 10; (u#,0%)= (0,1) determines the uncontaminated case. All the i=sué
based on 10,000 replications and the sample sizea &10,20. The variance of the
future observation is supposed to be known. Foh eaenbination, we compare the
estimative and the approximat& predictive densities, computed both at the observed
value of the maximum likelihood estimatar and at the observed value of the Huber
estimator@,, , with the new robust predictive density (4.1) eedéd atw= @, . As a
measure of fit, we adopt the average Kullback-lgeldivergence (see, for example,
Harris, 1989 and Basu & Harris, 1994) and we deteznthe ratio of the average
Kullback-Liebler divergence of the other four melBoto that of the estimative
distribution, based on the maximum likelihood estion. The average Kullback-Liebler
divergences involving the estimative and the appnaie p* predictive densities,

evaluated atw = @, can be computed exactly. For the other predidtisg&ibutions, the



divergence is estimated by simulation. The standard error for tressponding ratios is
given in parentheses.

The results are presented in Table 1. A part from the uncontathicede, we
observe that the robust predictive distributions perform substantiatisr hean those
based on the maximum likelihood estimator. With regard to the robestods, it
appears that the approximate predictive density (4.2) and the fully robust predictive
density (4.1), computed ab = @, , improve the estimative one based on the same
estimator. Note that, in accordance with Basu & Harris (1994)|ntipeovement is
greater when the contamination is location-based rather thderbssed. A direct
comparison between the fully robust and the approxinpateredictive densities,
computed atw = @,, , shows that the first one performs slightly better in almdshal
contamination cases. The superiority is more pronounced when the gwattami
concerns the mean of the true model, while it almost disappears wWie

contamination concerns the variance.

APPENDIX

Derivation of formula (3.4)

In order to obtain the approximate robust predictive density (3.4) on&der
the following procedure. First, it is convenient to rewrite exgpoes(3.3) as a ratio of

integrals in the standard form (see Tierney, Kass & Kadane, 1989) such as

_ j N(t;z,a)) exp{—rn(t ;a))}dt

fS(Z;w)_ jD(t;w)exp{—rn(t;w)}dt ’

where rn(t;a)) = nr(t;a)) = nlogc(t;a)), N(t;z,a)) = f(z;t)D(t;a)) and
D(t;a)):‘det[vvij (t;w)]”det[vij (t;a))]‘_]/z. If r(t;w) is smooth and presents a unique

minimum in the interior of the domain at=t then, by applying formula (A.1) in

Vidoni (1995) to the numerator and to the denominator, we obtain

10



oot 8 202 N ol
o | 1+ A, ”{Di (f;w)B +1D, (F;w)CE}{D(Fiw)}_l{ho(”_z)} '

N, ((;zw) andD, (T;w), I, = (i1 ..... im) , MON™, are themth partial derivatives of

N(t;z,a)) and D(t;a)) with respect to the components bfwith indices in |,

computed at =T . The O(n™) correction termsA,, B} andC! are given by

— 1]~ = ~ =~ ij ~hk ~mo-1 1~ L bk a1
Aj—g{Brijhrk,m+2rih, r].km}r*”r T =g rnT,
Bi :_%rjhkrjhrkin—l, Cij =Fijn_l,

n

where 7, =1, (T;e), with r_(t@), 1,=(is.-in), MON*, the mth partial
derivative of r(t;w), with respect to the corresponding components aifd ¥/ the
(i,j) element of the inverse of the math((f; )]

Secondly, a further expansion for the denominaliows us to cancel, and to
simplify some terms involving the partial derivatsvof N(t;z,w) and D(t;w). Thus,
with the quantitiesB,‘1 andC,ﬂj given explicitly, the approximation (3.4) is obitad.

Since, from the definiton of aft;w) it follows that

expressed explicitly giving,

r(tw) = -a, (t ow, (t @),
r(tw) = —{a,,j (t; ww, (t; ) + a, (t; w)w, | (t;a))} :

in(tiw) ={a, (o, (o) +a, (to)w, ,(tw) [2]+a, G ow, , (tw)

where a,, (tw) and w,, (tw), Iy =iy i) , MON®, are themth partial

derivatives ofa, (t;w) andw, (t;w) with respect to the corresponding components of

11



and[2] indicates a sum of two terms obtained by permutation of the sped h.
The minimum{t =t(w) is such thatr,(f;w)=0, i=1,...d , and tha{rij (t; a))] is a

positive definite matrix. Furthermore, using the differentiatidie for determinants, it

follows that
D, (Dt )} ™ = w(tww, (t:w) - 3v(t v, (t ),

where v, (t;w), is the partial derivative of,(t;w) with respect to thith component
of t and w*(t;w) and v"(t;w) indicate the(r,s) elements of the inverse of the
matrices[wrs(t; a))] and[vrs(t;a))] , respectively.

The Laplace expansion used in this context, assuihes (3.4) is an

approximation, with relative error of ord@(n‘z), to fs(z; c?)M) and, with relative
error of orderO(n‘”), to fgy (z; c?)M). As a consequence of the balance relations

linking the joint moments of the derivativeélm(t;z), this approximation is a

probability density function, since it is exactlgrmalized.
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